If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+30X-600=0
a = 1; b = 30; c = -600;
Δ = b2-4ac
Δ = 302-4·1·(-600)
Δ = 3300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3300}=\sqrt{100*33}=\sqrt{100}*\sqrt{33}=10\sqrt{33}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{33}}{2*1}=\frac{-30-10\sqrt{33}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{33}}{2*1}=\frac{-30+10\sqrt{33}}{2} $
| 5.4k-24.8=-4.6k-17.3 | | -3=-(x-8) | | 20x-4+27x-4=180 | | 12=-6(-5+x) | | -35=-5(4+x) | | (2x-3)=(10x-17) | | -6=(x-10)/3 | | (2x-3)=(10x-27) | | 8.5u+4.5=12.1u-2.7 | | x/4/1=-6 | | 7-0.4w=-1 | | 2n+25+4n+17=180 | | 10x+80=50-4x | | 0.6f+0.7=5.5 | | 3654+453x=65x | | (12x+14)=(15x-13) | | 7x-98=3456 | | 2x-68=5x-56 | | 4(x+9)-36=3(x-4) | | (15x+14)=(15-13) | | .5(4x+10)=-15 | | y=3+0.5+2 | | (6x+26)=(16x) | | 5x/(3x-4)=14 | | 2n+25=4n+17=180 | | 5(x-11)-16=-106 | | -13+12x=7x+67-5x | | x+(0.8*x)=2.5 | | -6(9+2x)=30 | | -2(3x-10)+11x=-30 | | (7x+3)=(9x-33) | | 5x+12=6.2x |